ɬÀï·¬

News

Astrocyte cells in the fruit fly brain are an on-off switch

Sarah DeGenova Ackerman
By Sarah DeGenova Ackerman
May 9, 2021

Neuroplasticity — the ability of neurons to — can be turned off and on by the cells that surround neurons in the brain, on fruit flies that I co-authored.

Astrocyte-cells-445x219.jpg
Sarah DeGenova Ackerman,
The colors in this microscope photo of a fruit fly brain show different types of neurons
and the cells that surround them in the brain.

As fruit fly larvae age, their neurons shift from a highly adaptable state to a stable state and lose their ability to change. During this process, support cells in the brain – called astrocytes — that send and receive electrical information. When my team removed the astrocytes, the neurons in the fruit fly larvae remained plastic longer, hinting that somehow astrocytes suppress a neuron's ability to change. We then discovered two specific proteins that regulate neuroplasticity.

Why it matters

The human brain is made up of billions of neurons that form complex connections with one another. Flexibility at these connections is a , but things can go wrong if it isn't tightly regulated. For example, in people, too much plasticity at the wrong time is linked to brain disorders such as and . Additionally, reduced levels of the two neuroplasticity-controlling proteins we identified are linked to increased susceptibility to and .

Similarly, in our fruit flies, removing the cellular brakes on plasticity permanently impaired their crawling behavior. While fruit flies are of course different from humans, their brains work in very similar ways to the human brain and can offer valuable insight.

Fruit-flies-754x488.jpg
Sarah DeGenova Ackerman,
As fruit flies develop, special cells surround their neurons and seem to halt neuroplasticity.

One obvious benefit of discovering the effect of these proteins is the potential to treat some neurological diseases. But since a neuron's flexibility is closely tied to learning and memory, in theory, researchers might be able to in a controlled way to . This could, for example, allow people to more easily learn a new language or musical instrument.

How we did the work

focused our experiments on a specific type of neurons called motor neurons. These control movements like and in fruit flies. To figure out how astrocytes controlled neuroplasticity, we used genetic tools to turn off specific proteins in the astrocytes one by one and then measured the effect on motor neuron structure. We found that astrocytes and motor neurons communicate with one another using a specific pair of proteins called neuroligins and neurexins. These proteins essentially function as an off button for .

What still isn't known

My team discovered that two proteins can control neuroplasticity, but we don't know how these cues from astrocytes cause neurons to lose their ability to change.

Additionally, researchers still know very little about why neuroplasticity is so strong in younger animals and . In our study, we showed that prolonging plasticity beyond development can sometimes be , but we don't yet know why that is, either.

Fruit-flies-brain-445x254.jpg
Sarah DeGenova Ackerman
This is a caption.In this image showing a developing fruit fly brain on the right
and the attached nerve cord on the left, the astrocytes are labeled in different
colors showing their wide distribution among neurons.

What's next

I want to explore why longer periods of neuroplasticity can be harmful. Fruit flies are great study organisms for this research because it is very easy to . In my team's next project, we hope to determine how changes in neuroplasticity during development can lead to long–term changes in behavior.

There is so much more work to be done, but our research is a first step toward treatments that use astrocytes to influence how neurons change in the mature brain. If researchers can understand the basic mechanisms that control neuroplasticity, they will be one step closer to developing therapies to treat a variety of neurological disorders.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Sarah DeGenova Ackerman
Sarah DeGenova Ackerman

Sarah DeGenova Ackerman is a postdoctoral fellow at the University of Oregon Institute of Neuroscience and Howard Hughes Medical Institute.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Targeting Toxoplasma parasites and their protein accomplices
Journal News

Targeting Toxoplasma parasites and their protein accomplices

April 11, 2025

Researchers identify that a Toxoplasma gondii enzyme drives parasite's survival. Read more about this recent study from the Journal of Lipid Research.

Scavenger protein receptor aids the transport of lipoproteins
Journal News

Scavenger protein receptor aids the transport of lipoproteins

April 11, 2025

Scientists elucidated how two major splice variants of scavenger receptors affect cellular localization in endothelial cells. Read more about this recent study from the Journal of Lipid Research.

Fat cells are a culprit in osteoporosis
Journal News

Fat cells are a culprit in osteoporosis

April 11, 2025

Scientists reveal that lipid transfer from bone marrow adipocytes to osteoblasts impairs bone formation by downregulating osteogenic proteins and inducing ferroptosis. Read more about this recent study from the Journal of Lipid Research.

Unraveling oncogenesis: What makes cancer tick?
ASBMB Annual Meeting

Unraveling oncogenesis: What makes cancer tick?

April 7, 2025

Learn about the ASBMB 2025 symposium on oncogenic hubs: chromatin regulatory and transcriptional complexes in cancer.

Exploring lipid metabolism: A journey through time and innovation
ASBMB Annual Meeting

Exploring lipid metabolism: A journey through time and innovation

April 4, 2025

Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the ASBMB annual meeting.

Melissa Moore to speak at ASBMB 2025
ASBMB Annual Meeting

Melissa Moore to speak at ASBMB 2025

April 2, 2025

Richard Silverman and Melissa Moore are the featured speakers at the ASBMB annual meeting to be held April 12-15 in Chicago.