ɬ﷬

News

'Protein sandwich' could transform cancer drug discovery

Jonathan Watson
By Jonathan Watson
June 1, 2024

A breakthrough class of molecular glue identified at the University of Dundee could pave the way for a new generation of drugs to target cancers and neurodegenerative diseases.

A research team at the university’s Centre for Targeted Protein Degradation, led by , in collaboration with the research group of Georg Winter at the Research Center for Molecular Medicine  of the Austrian Academy of Sciences in Vienna, has defined a new class of so-called “intramolecular bivalent glue,” which binds proteins — crucial to the cells that allow our bodies to function correctly — that would otherwise stay apart.

Alessio Ciulli
Alessio Ciulli is a professor at the University of Dundee School of Life Sciences and director of the university's Centre for Targeted Protein Degradation.

This research has been published in the journal .

“These findings have major implications for the entire pharmaceutical industry engaged in targeted protein degraders,” Ciulli said. “This is particularly true for the development of drugs that target cancer, neurodegenerative diseases and many more illnesses driven by proteins that have always been considered undruggable.

“Proteins are essential for our cells to function properly, but when these do not work correctly the body is vulnerable to disease.

“The glue that we have been able to define is special because it first attaches itself to one protein in two places — not just one — and then recruits the second protein, effectively sandwiching the two proteins together.

“We have only been able to identify this using our targeted protein degradation technology and have identified a vulnerability that can be exploited by the design of new drugs that could potentially transform treatment for cancer patients and those with other untreatable diseases.”

Targeted protein degradation, or TPD, is an emerging field of drug development for treating diseases that involves redirecting protein recycling systems in our cells to destroy disease-causing proteins. Most TPD strategies use small molecules — so-called degraders — to recruit these target proteins to a class of enzymes called ubiquitin E3 ligases. The E3 tags the target protein with ubiquitin labels, which ultimately leads to the destruction of the disease-causing protein via the cellular waste bin: the proteasome.

Working with collaborators at CEMM, the Goethe University of Frankfurt, and Eisai Co., Ltd, a Japanese pharmaceutical company, the Dundee team has been able to unveil a novel mechanism of molecular gluing, different from those previously known. This new mechanism binds to two sides of the target protein instead of just one, prompting a rearrangement of the whole protein and stabilising its previously unknown interaction with the E3 ligase.

Furthermore, the team was able to visualise, for the first time, the precise mechanism by which their compounds work and bring together the target proteins to one of these E3 ligases. Because the molecules have two heads, which latch on to two different regions within the same target protein, these have been coinedintramolecular bivalent glues.

This world-leading work has also illuminated previously underappreciated features and properties of molecular glues, paving the way for scientists to develop deeper understanding of glues that could allow for new classes to be discovered more rapidly.

“The impact of what we have revealed here cannot be underestimated,” Ciulli said. “This will cause a ripple effect throughout the pharmaceutical industry and has the potential to transform how we view drug development.

“Dundee is a world-leader in TPD, and our new home here at the Centre for Targeted Protein Degradation will only further enhance the reputation of the University in this revolutionary space.

“I must also pay tribute to our collaborators, whose input has been crucial in achieving this seismic breakthrough.”

Ciulli, from the university’s , is a leading figure in developing insights into TPD. Degrader molecules developed by Ciulli and his team are now utilized around the world in the quest to develop new treatments for illnesses such as cancer, as well as dermatological and neurological conditions. TPD research has attracted billions of pounds of investment globally in recent years, with Dundee widely recognised as a world leader in the field.

This article is republished from the University of Dundee website. Read the original .

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Jonathan Watson
Jonathan Watson

Jonathan Watson is the senior press officer at the University of Dundee, where he has worked on some of the institution’s highest-profile media campaigns since 2018. Previously, he spent 10 years working as a journalist for The Courier, one of Scotland’s leading broadsheet newspapers.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Using DNA barcodes to capture local biodiversity
ASBMB Annual Meeting

Using DNA barcodes to capture local biodiversity

April 15, 2025

Undergraduate at the University of California, Santa Barbara, leads citizen science initiative to engage the public in DNA barcoding to catalog local biodiversity, fostering community involvement in science.

Targeting Toxoplasma parasites and their protein accomplices
Journal News

Targeting Toxoplasma parasites and their protein accomplices

April 11, 2025

Researchers identify that a Toxoplasma gondii enzyme drives parasite's survival. Read more about this recent study from the Journal of Lipid Research.

Scavenger protein receptor aids the transport of lipoproteins
Journal News

Scavenger protein receptor aids the transport of lipoproteins

April 11, 2025

Scientists elucidated how two major splice variants of scavenger receptors affect cellular localization in endothelial cells. Read more about this recent study from the Journal of Lipid Research.

Fat cells are a culprit in osteoporosis
Journal News

Fat cells are a culprit in osteoporosis

April 11, 2025

Scientists reveal that lipid transfer from bone marrow adipocytes to osteoblasts impairs bone formation by downregulating osteogenic proteins and inducing ferroptosis. Read more about this recent study from the Journal of Lipid Research.

Unraveling oncogenesis: What makes cancer tick?
ASBMB Annual Meeting

Unraveling oncogenesis: What makes cancer tick?

April 7, 2025

Learn about the ASBMB 2025 symposium on oncogenic hubs: chromatin regulatory and transcriptional complexes in cancer.

Exploring lipid metabolism: A journey through time and innovation
ASBMB Annual Meeting

Exploring lipid metabolism: A journey through time and innovation

April 4, 2025

Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the ASBMB annual meeting.